
HTTP
HyperText Transfer Protocol

Rafael Cardoso - DTA

What is HTTP?
An application-layer in the TCP/IP suite for transmitting
hypermedia documents, such as HTML

Designed for communication between web browsers and
web servers

It was developed by Tim Berners-Lee and his team
between 1989-1991.

Summary of HTTP
versions
There exist 5 different versions of
HTTP.

The 0.9 and 1.0 are now obsolete

HTTP/0.9
1991

HTTP/1.0
1996

HTTP/1.1
1997

HTTP/2
 2015

HTTP/3
 2022

How does it
work?

A client opens a connection to make a request, then waits
until it receives a response.
Usually, the client is a web browser.

It follows a classical client-server model

Between the client and the server there are numerous
entities, collectively called proxies, which perform different
operations and act as gateways

Proxies

https://developer.mozilla.org/en-US/docs/Glossary/Proxy_server

01

02

03

04

It is used to send requests and receive an answer.
The client can open a new connection, reuse an
existing or open different TCP connections to the
servers.

Open a TCP connection

Read the response sent by the
server

HTTP/1.1 messages are human-readable.

Send an HTTP message

HTTP FLOW
When the client wants to communicate with
the server, the following steps happen:

Close or reuse the connection for further
requests

HTTP MESSAGES REQUESTS

An HTTP method

GET
used to read a representation of a resource
in case of response - status code 200
if error - 404 (not found) or 400 (bad request)

POST
often used to create new resources
if succesful - status code 201

PATCH
used to modify resources
the patch request should contain the instructions of
how a resource should be changed

DELETE
used to delete a resource identified by filters or ID
if succesful deletion - status code 204 (No Content)

They are many, the more used are:

HTTP requests have the following elements:

A path

Version of the HTTP protocol

Headers
That convey additional information for the servers

HTTP MESSAGES RESPONSES

Version of the protocol they follow

HTTP responses have the following elements:

Status code
Indicating if the request was successful or not

Status message
Short description of the status code

Headers
Like the ones for the requests

HTTP/1.1 is designed to be simple. It can be read and
understood by humans, making easier testing for
developers and reducing complexity for newcomers.

Simple

HTTP headers make the protocol easy to extend and
experiment with.

Extensible
There is no link between two requests being
successively carried out on the same connection.

Stateless

01

02 03

Basics aspects
of HTTP/1.1

What can be controlled by HTTP/1.1?

HTTP/1.1 can control how documents are
cached

Caching

HTTP/1.1 can provide basic authentification
by using WWW-Authenticate and similar
headers or by setting specific session using
HTTP/1.1 cookies.
Authentification protects pages so that only
specific users can access them.

Authentification

HTTP/1.1 cookies allow you to link requests with
the state of the server, and it creates sessions.

Sessions

Proxying and tunneling
Clients and servers usually are located on
intranets and hide their true IP address.
To cross this network barrier, HTTP/1.1
requests go through proxies.

Relaxing the origin constraint
To prevent snooping and other privacy invasions, Web
browsers enforce strict separation between Web sites.
 HTTP headers can relax this strict separation on the
server side, allowing a document to become a patchwork
of information sourced from different domains

Exercise 1.1
Try a GET

 With putty, I connected myself to www.google.com
I used some specific settings that you can see on
the image below

1. 2. Then with the command prompt, I made a GET request
to www.google.com

Status code - 200 OK
3. We can see that google answered.

Exercise 1.2
Replay a GET

 I opened Wireshark, to try to find the methods I used previously during my web browsing.
We can see in the picture below, circled in red, that the GET method was used

1.

 2. I then replaied the GET method with putty:

Exercise 1.3
Replay a POST

With WireShark, I captured the communication between me and the server when I posted a
comment on a website:

1.

We can see that the POST method was used to post the
comment, and the GET method to charge the website.

Exercise 1.3
Replay a POST changing the comment content

Right click on the POST info (on Wireshark) - "Suivre" - "Flux TCP"
To replay a post, changing the comment content, I did the following steps:

1.

Exercise 1.3
Replay a POST changing the comment content
2. I copied the red section, and pasted it onto notes.
3. Then I changed the comment (you can see it on the image below, red underligned)

Exercise 1.3
Replay a POST changing the comment
content
4. Then on putty, I connected myself to the website with
the IP address.

We can see that the request was successful. (status
code = 302 Found)

5. I pasted on the command prompt the POST request.

Exercise 1.3
Replay a POST changing the comment
content
6. Then I checked on the website if my new comment
appeared, and it did.

https://doc.oroinc.com/api/http-methods

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Bibliography of informations
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

Slide 1 - https://upload.wikimedia.org/wikipedia/commons/8/83/Internet1.svg

Slide 2 - https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview/fetching_a_page.png

Taken on https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview#http_flow
Slide 5, picture 1 and 2

Bibliography of pictures

Slide 6 - https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview/http_request.png

Slide 7 - https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview/http_response.png

https://doc.oroinc.com/api/http-methods/#:~:text=The%20primary%20or%20most%20commonly,they%20are%20utilized%20less%20frequently.
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

